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ABSTRACT

Incompressible, non-vortex-shedding bluff-body flows and supersonic base-pressure flows
are discussed from a unified viewpoint in which the aspect ratio of the near wake is determined
from the balance of shear-stress and pressure forces on the near-wake boundary. The base
pressure and drag are then determined from free-streamline theory. The analysis is incomplete,
for want of sufficient information about conditions in reattaching supersonic turbulent shear
layers.

1. INTRODUCTION

The problem of bluff-body drag at high Reynolds number is one of the oldest unsettled
ones in fluid dynamics. Leonardo's famous sketches depict flow around cylindrical structures
and his notebooks contain references to the "force of the flow". Newton obtained a formula
for the force on a flat plate of area A set normal to a flow which he represented by a stream of
particles (Fig. I a), having momentum flux per unit area mNU2 ( = pU2 in fluid flow notation).
Assuming that the plate absorbs all this momentum the drag force is D = pU2A which gives a
value of drag coefficient, CD = D/1 pU 2A = 2. While this value is indeed close to measured
values of drag of such bluff plates with large span, the flow field and pressure distribution in a
continuum fluid are rather different from those in Newton's model, especially in subsonic flow.
For a disc the model would give the same value, CD = 2, but the actual drag coefficient in

S incompressible flow is CD = 1.1.

The modem era of bluff-body modelling began with the mathematical paper of Kirchhoff
C.: [1], who used the free-streamline method of Helmholtz to represent the flow past the bluff flat

plate (Fig. lb). This captures many of the important features of bluff-body flow: (i) separation,
here from the edges of the plate; (ii) the resulting free shear layers, represented as the surfaces
of velocity discontinuity, 4p = 0; (iii) a low value of "base-pressure" coefficient, having in this
case a value which is set at Cpb = 0; and (iv) a correspondingly high value of drag coefficient,
in this case 0.88, made up entirely of pressure drag, but only about half the value actually
observed in real flow past a flat plate. The discrepancy is related to an important feature,

fowl missing in Kirchhoff's flow, namely the near-wake "closure" or "reattachment" of the free shear
layers. Kirchhoff's wake is open to downstream infinity whereas real wakes tend to close by
the action of laminar or turbulent diffusion. An extreme case of such diffusion occurs when the
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separated shear layers roll up soon after separation, alternately forming and "shedding" vortices
on each side of the wake. Wake closure results in Cpb < 0 and CD correspondingly higher, the
actual values depending on the situation. For example, a splitter plate placed on the centerplane
downstream of the body eliminates the vortex shedding instability; the closure is then effected
mainly by turbulent diffusion of the free shear layers, located around ip = 0. The drag is then
not as high as with vortex shedding but still higher than Kirchhoff's value.

The Kirchhoff model for the wake is for steady flow; its possible application to real,
unsteady (vortex-shedding, turbulent) flows requires that a correspondence be sought between
mean values of drag (CD), pressure coefficients (Cp), etc. and the mean flow. For example,
the mean flow field for flow past a flat plate or "wall", of diameter d at Reynolds number
U,,d/l, =_ Re = 105 , is shown in Fig. 2a from Ref. 2. In the actual unsteady flow (Fig 2b) there
is vigorous vortex shedding, at a frequency fd/Uo = St - 0.14, as well as other turbulent
fluctuation. The values [3) of base suction (-Cpb = 1.4) and drag coefficient (CD = 2.1) are
considerably higher than those from the Kirchhoff model. When a splitter plate is placed in
the near wake, the vortex shedding instability is eliminated, the mean flow is strikingly altered,
as shown in Fig. 2c, and the values of base suction and drag are reduced to -Cpb = 0.6 and
CD = 1.4, respectively [2]. For these mean flows an improvement over Kirchhoff's model
can be obtained by adopting a different class of free-streamline models, for example the one
proposed by Riabouchinsky [4] which provides for closure of the wake by the device of an
"image body" at a distance x = L from the bluff body (Fig. 1c). The wake length L and width
W depend on the value of base pressure Cpb = CP,, which now becomes a parameter of the
problem; in fact it is the crucial parameter that must be understood and modelled in the quest
for a "solution" to the bluff-body problem.

In Ref. 5 we discussed a possible model for bluff-body flows based on the idea [6] that the
wake pressure is set by the balance of shear-stress and pressure forces acting on the boundary
of the wake which is defined by a free-streamline model such as Riabouchinsky's. When vortex
shedding is not present the instantaneous flow field is not greatly different from the mean flow;
the shear stresses are maximum near the zero streamlines, while the main pressure change (a
pressure rise) occurs in the closure region, which in effect replaces the Riabouchinsky image
body. In Ref. 5 we did not address this region adequately; it will be the main focus of the present
discussion.

The problem of pressure rise in the closure region was addressed in the famous papers
of Chapman et al. [7] and Korst [8], principally for supersonic base flow. Here we attempt
to present a unified view of both the supersonic base-pressure problem and the incompressible
bluff-body problem without vortex shedding, first comparing the two cases for flow over a step.
For supersonic flow, this easily generalizes to cases with various forebody shapes, e.g. a fam.ily of
wedges, because the forebody is uncoupled from the base but the corresponding incompressible
class of flows is more difficult in the sense that the whole flow field is interactive; this is
discussed in the following sections.

In these flows the separated free shear layer which develops around 4, = 0 plays a central
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role. For reference, we have summarized in the Appendix the salient properties of canonical
free shear layers, for possible use in the development of the model.

2. SUPERSONIC BASE FLOW

The classic supersonic base flow is illustrated in Fig. 3. It also exhibits the typical bluff-
body features: separation at the edges of the base; free shear layers at constant pressure, which is
lower than that upstream of the base; corresponding base "suction" or drag. In two dimensional
flow the free streamlines are straight, terminating at the closure or reattachment point, r, where
the flow has to turn back into the free-stream direction to a "downstream" pressure Pd which,
in two dimensional flow, is very close to Pl. Because the vortex shedding instability is absent
in supersonic flow, introduction of a stabilizing barrier along the centerplane, i.e. a splitter plate
in Fig. 3a has little effect other than to perturb the small backflow which may be present in the
near wake and hardly changes the base pressure [9, 10]. Thus, the upper half of the base flow in
Fig. 3a is little different from the flow over a backward facing step in Fig. 3b. The corresponding
subsonic base flow without vortex shedding is shown in Fig 3c; it may be either flow over a step
or over a base with splitter plate.

Fig. 3 contrasts the simpler free-streamline geometry for supersonic flow with the incom-
pressible case in Fig. 1. The connection between wake pressure and wake geometry is also
simpler for the supersonic case; i.e. the wake length L (Fig. 3b) is simply related to p,, by the
Prandtl-Meyer expansion from P, to Pw(= Pb). Decrease of L corresponds to decrease of pb,
and increased drag. It is also clear that conditions at the reattachment point, r, must play an
important role. In the free streamline model r is a point of velocity discontinuity but in the real
flow it is at the termination of the zero streamline 0* = 0 which is now imbedded in the free
shear layer (Fig. 4) that develops around the inviscid location ik = 0. In developing a model of
this flow, it is useful to consider an asymptotic condition in which the free shear layer, starting
with initial thickness 00 = 0 at separation, develops at constant pressure p, = Pe with velocity
U, = Ue outside and zero velocity inside (i.e. neglecting any motion inside the so called "dead
water" region). Then use can be made of data from experiments or computations on canonical
free shear layers. A summary of such data is given in the Appendix.

Almost forty years ago, Chapman et al. [7] and Korst [8] independently proposed a criterion
for closing the problem, i.e. finding the dynamically compatibile pair, Pb and L. Known as the
Chapman-Korst (Ch-K) criterion (Ch for laminar flow, K for turbulent), the criterion is that the
total pressure pt on the reattaching streamline 0* = 0, which is embedded in the shear layer
(Fig. 4), must be equal to the downstream pressure Pd(-- Pi), to ensure that the streamlines
outside k,* = 0 have sufficient energy to reach Pd without flow reversal.

The criterion seemed to work astonishingly well. For example, assuming that the initial
free shear-layer thickness at separation, 0,/h, is small enough to allow a self similar, equilibrium
free shear layer to develop, values of Pb/p1 calculated for values of M1 between 1.5 and 4 are
within a few percent of measured values [8]. For larger values of 0./h a higher value of base
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pressure is predicted because there is not sufficient distance before reattachment (at r) for u*
and pt to reach their maximum, asymptotic values; the reattachment point would move further
downstream to r' to allow a higher value of wake pressure p', thus a lower value of required
pressure rise, Pd - P',,. Success in rationalizing these and other effects on base pressure made
the Ch-K criterion very attractive.

However, there were notable exceptions which, taken together with evident difficulties
in the theoretical idea of Korst and Chapman, led to re-examinations of the problem, eg.
Nash [11]. The difficulty on the theoretical side appears in a well-known inconsistency in the
Korst-Chapman idea: recompression along the dividing streamline is supposed to be isentropic
up to the point of reattachment or flow reversal (Fig. 4), that is, p,. = pt. However there must
be additional pressure rise beyond the point r, due to recovery in the upper part of the shear
profile. That is, Pd > p, and SO Pd > Pt, in contradiciton to the basic assumption noted above.
Experiments confirm that the point of reattachment r lies only part way up the pressure rise
curve, i.e. P, < Pd, as sketched in Fig. 4. Chapman and Korst [12], aware of this difficulty,
speculated that compensating effects must be at work to produce the pressure rise given by their
formulas, namely a loss of total pressure on the dividing streamline in the "dissipative region"
near reattachment, resulting in Pr < pt, is compensated by the further rise of pressure in the
development region downstream of r. But Nash cited experimental results which gave values
of base pressure lower than the lowest limiting values predicted by Ch-K theory and presented
an analysis which suggested that the discrepancy was in fact due to effects of initial shear-layer
thickness and could be significant. His conclusions were supported in experiments by Sirieix
et al. [13, 14]. The latter demonstrated an even more serious problem with the Ch-K criterion:
they were able to modify the wall just downstream of r, thus changing the pressure distribution
downstream of r, without affecting the pressure and the base flow upstream of r!

Modifications of the Ch-K criterion have been proposed, eg. by Sirieix et al., and other
approaches to the base-pressure problem have been explored; for example, Tanner [15] de-
veloped a "wake-outflow" concept which focusses attention on the entrainment into the free
shear layers and looks for a momentum balance with the pressure forces. In the following, we
explore a model in which the momentum balance is between pressure and shear-stress forces,
as initially proposed by Sychev [6] in his attempt to develop an asymptotic (Re --. oo) model
for steady, laminar bluff-body flow. Before proceeding with supersonic base flow we return to
the incompressible case, where quantitative experimental data for turbulent free shear layers is
more complete (cf. the Appendix).

3. SUBSONIC BASE FLOWS

Chapman et aL [7] had suggested that their criterion was also relevant to nonshedding
subsonic base flows, like the one sketched in Fig. 3c, for which a separated free shear layer
is defined. To further explore this, Roshko and Lau [16] obtained pressure distributions in the
reattachment region downstream of separation (x = 0) for the various nonshedding geometries
shown in Fig. 5a. The difficulty in using the criterion for prediction of base pressure in subsonic
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flow, because of the interactive nature of the whole flow field, is evident from the variety of
pressure distributions, which provide no obvious guide for defining the downstream pressure

Pd. However, a useful comparison of these distributions is obtained by rewriting them in
terms of a reduced pressure-rise coefficient Cp = (p - P), , pU2 , referenced to the dynamic
pressure at the edge of the reattaching shear layer, instead of the conventional coefficient
C, =- (p - p.))/½ pU2. Such a definition had been introduced by Crabtree [17] to correlate
pressure rise in leading-edge separation bubbles on airfoils and was implied in the paper by
Chapman et al. In terms of C1p, the distributions now compare as shown in Fig. 5b where the
distance from the base is normalized by the distance to the reattachment point z,. Except for
the case with a long forebody, for which the boundary layer at separation, 0, /h, is relatively
large, there is fairly good collapse of the data. Govinda Ram and Arakeri [18] confirmed and
extended such a plot. The apparent generality of the reattachment pressure rise gives hope that
it might be worked into a wake model of incompressible base flow and that there may be a
corresponding generalization for the supersonic case.

Several interesting features may be noted in Fig. 5b. Most prominent is the overall
pressure-rise coefficient ý,• -- 0.35. One may also estimate a value of the pressure coefficient
at reattachment, C1, -- 0.27; if the free shear layer were a canonical one (see Appendix) its
value should be 0.32. Again, the question is whether there is dissipation of total pressure in the

reattachment region or whether the experimental data are showing effects due to finite initial
thickness, as indicated above for supersonic base flows.

4. FLOW OVER A STEP

This is the classical bluff-body problem for supersonic flow but is also being used widely
for "validating" computational codes in incompressible flow. It represents perhaps the simplest
separated flow. The so called "dead water" region (Fig. 6a) is enclosed by the two sides of the
step and the zero streamline 0* = 0 which extends from the step shoulder to the reattachment
point r. Since there is no mean outflow through the boundary, the momentum balance for
the fluid inside it, "dead water" or not, is given by a balance of forces due to stresses on the
boundary. The equation for this, first proposed by Sychev [6], is simply

xr h

Pbh +Jfr*dx= fJP* dy

0 0

or
h x~r

f(*- Pb) dy = fJr*dx, (la)
0 0

Here, p* and r* are the stresses on the zero streamline V)* = 0. For supersonic flow these are
usually made non dimensional with the pressure :; but here we will put them in canonical form
by referencing to p, = P, Pb or by the d,,aamic pressure !pUg. The latter, valid also for
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incompressible flow, gives
h zfr

C1, dy = C, dx (lb)
0 0

where C1 M (p* - Pb)/ pU• is the canonicaa pressure coefficient introduced in the preceding
section and CG - Mr/ pU2 is the shear-stress coefficient for the mixing layer in t•ims of the
velocity Ue at its outer edge, which will correspond to the velocity U. on 4 = 0 from a free
streamline model for the outer flow. Correspondingly the wake length L will be identified with
Xr = L.

If further we define the mean values 1Zr
(C'.) _ f C.. dx (2a)

0

h

and [Cp. = fp dy (2b)

0

the elements of the balance of stresses are simply exhibited in the equation

[Cp.] h = (C,. )L

The length of the wake is given by
L =[Ci,.(3
h ( (3)

The problem is to determine suitable models for [Cp.] and (C,.Y..

In modelling [Cp, ] it would be useful to incorporate into it the reattachment pressure Cp,..
This can be done by writing, instead of Eq. 2b, the alternative definition

h

J Cp, dy C= phe (4)

0

where he =- ,h is the equivalent height which, with C4, gives the upstream component of
pressure force on ?P* = 0. Thus [Cp*] = (he/h)Cr,. = KCpr and

L ,•Cp,.
h(c?.) (5)

Equations 3 and 5 display the fundamental parameters defining the base flow. The normalized
length or aspect ratio of the wake is determined by the balance between shear stress and pressure
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rise on the boundary -treamline. The base pressure does not appear in this relation because it
is implicit in the reduced pressure coefficient. In this model, the wake dynamics is universal,
independent of the bluff-body geometry.

Ideally, for an asymptotic theory, cf the laminar problem [6], there would be a separation of
scales: the free boundary would be at constant pressure everywhere except in a small region near
r, at the end of the wake, in which the pressure rise would occur. However, turbulent mixing-
layer spreading rates are finite and it is unlikely that the wakes of different bluff bodies have
a universal description which is both simple and quantitatively accurate. With that precaution,
we explore in this and following sections the implications of Eqs. (3) and (5), to try to obtain
insights that are simple and still capture the essential dynamics.

Applying Eq. 3 or 5 to incompressible step flow (Fig. 6a) and using the canonical value
(C,.) = 0.025 gives L/h = 40 [Cp.] = 40 iv•,. With a value for r. = 0.65, determined
from the data of Arie and Rouse described in the next section, and with the canonical value
C;,. = 0.32, the result is L/h = 8.3. This is considerably larger than typical values (6-7) found
by various experimenters; it is not clear whether the laboratory values of (C,.) are higher than
our "canonical" value or C1,. is lower. For example, if Cv,. = 0.27 is chosen from Fig. 5b then
L/h = 7.0. This gives some indication of the sensitivity to actual conditions.

5. BLUFF-BODY FLOWS

The generalization of the step flow to a bluff-body flow, the flat plate with wake splitter,
is shown in Fig. (6b). As before, there is a balance of forces on the fluid enclosed by the body
and the zero streamlines. For convenience, we will refer to this region as the "bubble". On the
upstream side of the bubble the pressure is Pb, ie, on that part next to the base of the body as well
as on the zero streamline which separates from it. Pressure recovery occurs on the downstream
side of the bubble. Thus the force-balance equation is similar to Eq (1) for the step, but with h
now replaced by H = ½W, the half width of the bubble:

L = [C-- (6a)
H (C,.)

L 1 [C'*] = 1 KCpC6,.
or W - 2 (C,..) 2 (C,.) (6b)

This is a universal relation for the aspect ratio of the wake bubble behind any bluff body, not
only the flat plate. For the canonical values (C,.*) = 0.025, C = 0.32 and with K = 0.65, the
relation gives L/W = 4.2, whereas with C1,. = 0.27 from Fig. 5b the result is L/W = 3.5.

Additional steps are needed to relate the bubble dimensions to the base pressure and body
geometry. These are illustrated in Fig. 7 which has been constructed from the numerical solutions
by Plesset and Shaffer [19] of the Riabouchinsky free-streamline model for wedges. Variation
of the wedge half angle, 1 a,,,, from 0 (step flow) to 900 (flat plate) tracks a significant bluffness
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parameter [15], namely the direction in which the separating streamline ip = 0 leaves the body;
eg. parallel to the free-stream direction for the step flow and perpendicular for the flat plate.

The closure is indicated in Fig. 7a which shows the dependence of base pressure Cpb on
wake aspect ratio L/W for several wedges and the flat plate. The intersection of L/W = const.
with each curve determines a corresponding value of Cpb. Then Fig. 7b can be used to determine
values of L/d. The solutions for three choices of the wake parameter L/W (= 4.2 and 3.5,
from above, and 3.1 from Table 2) are shown in Table 1.

aw 30 60 90 180

degrees (flat plate)

L 4.2 CPb -0.38 -0.45 -0.46 -0.47
W Lid 6.0 8.7 11 14

L 3.5 CPb -0.44 -0.52 -0.55 -0.56
W L/d 6.6 7.8 11

L 3.1 CPb -0.48 -0.58 -0.61 -0.63
W L/d 5.4 6.8 9.0

Table 1. Model data for wedges and flat plate, for three choices of LIW

For a, --* 0 the curves in Fig. 7 approach the axis Cpb = 0; flow over a step corresponds to this
limiting case and, within the context of this model, Cpb = 0 for the incompressible step flow.

(C,-) = 0.028

[Cp- ] = 0.24 Cp,. = -0.02 Cp,, = 0.36 I = 0.65

L/W = 3.1

L/d = 8.4

Cpb = -0.60

Table 2. Experimental data for flat plate, obtained from Fig. 8 in Ref. 2.

The model results in Table I may be compared, in Table 2, with data from the measurements
of Arie and Rouse [2] in the wake of a flat-plate bluff body with a splitter plate. In that unique
experiment, measurements were obtained of the mean velocity field, the distribution of pressure
Cp and of Reynolds stress u'v'. From the velocity field they computed the streamlines, and
modified the wind tunnel wall to correct for blockage effects. The results are presented in Fig. 8
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of Ref. 2, which shows the computed streamlines and the profiles of u, Cp and u'v' at four
locations, x/L = 0.24,0.48,0.72 and 0.96. Thus, although data for evaluating [Cp.] and (C,.)
are available at only four points on 0* = 0, these are the most complete set available. There
may be some uncertainty in the values. For example, we obtained the value Cp,,_= 0.36 by
extrapolation from the data at the four points; the data point at x/L = 0.96 was Cp, = 0.32,
corrected from the measured value 0.26. Similarly from their hot-wire measurements of (-u'v')
at four locations we determined the value (C,*) = 0.028, somewhat higher than the canonical
value 0.025. For this bluff-body configuration the conditions for a canonical free shear layer are
favorable because the initial thickness 0o Id of the shear-layer is very small after its acceleration
on the face of the plate and because the pressure is constant over most of the free boundary,.
The difficulty of measuring u'v' or the delicacy of the blockage corrections may account for the
discrepancy, or it may be real.

The values, (C,*) = 0.028 and [Cp, ] = 0.24 listed in Table 2, give in Eq. 6b the wake
aspect ratio L/W = 4.3 rather than the value 3.1 from the zero streamline pattern determined by
Arie and Rouse (Fig. 2c). On the other hand, for LIW = 3.1 Riabouchinsky's free streamline
model gives the values of Cpb and L/d listed in Table 1 rather than those measured.

Thus the appropriate, "universal" value of L/W is uncertain. For the several values
discussed, Fig. 7b and Table 1 show the corresponding changes of base pressure with change of
the wedge angle. Corresponding values of drag coefficient for wedges with wake splitter can be
found from the free-streamline model calculations [19]. With L/W = 3.5, they are CD = 0.49,
0.79, 1.01 and 1.38 for a,,, = 30, 60, 90 and 180 deg., respectively.

6. THE SUPERSONIC CASE

As indicated in the Appendix, information about supersonic shear layers is much less
complete than for the incompressible case. For one thing, the Mach number Me at the edge of
the layer is now an additional parameter. A strong effect of increasing Me from zero is to reduce
the growth rate of the shear layer d6/dx and the magnitude of the shear stress coefficient C,..,
as indicated in Fig. A2. The change becomes slower for Me > 2; a value of C,-. - 0.005 may
be a useful first estimate for values of M, > 2, correspondingly for M1 > 1.5. While this is

tentative, trying to obtain an estimate for [Cr* ] from available experimental data was even less
rewarding. Pressure distributions on the reattachment wall are available but projecting them
onto 0* = 0, accurately locating r and estimating Cpr proved to be too uncertain.

Instead, to obtain some insights into [C15], we work back from a known value of Cpb,

as follows. For M1 = 2.03, Sirieix [14] obtained an asymptotic value Pb!P1 = 0.30 by
extrapolating experimental values to O,/h = 0. This corresponds to --Cpb = 0.25 and to a
Prandtl-Meyer expansion which gives L/h = 3.2 (or LIW = 1.6) and M, = 2.80. Thus, with
C... ) =0.005 in Eq. 3 a value for [Cr.] n 1C5,= 0.016 is obtained. This is considerably

smaller than in the incompressible case but of course it has to balance a considerably smaller
shear force. To see it in terms of r, Cý. we estimate C,, = 0.2 from pressure-distribution data in
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Ref. 14. This gives K. = 0.08 compared to 0.65 for the incompressible case. In fact, one would
expect r to be considerably smaller in supersonic flow because the shear-layer spreading angle
d,/dx is smaller by a factor of 3 or 4 and because the shear layer approaches the reattachment
point at a smaller angle.

For high values of M 1, the expansion from Pl to Pb leads to even higher values of
Me, and it may be useful to examine the limiting case Me > 1. The total pressure on

0 is given, for a perfect gas by p* = p, (1 + _ M*2):i, where M* = u*/a*.

Now u* = cUe, where c is some constant for that limiting case; to obtain a* we assume
the adiabatic relation a*.2 = a - (U2 1 U*2 ) _ 2-1U. 2 ( 1),fora., <U Then=a1 2 2 , • loa <U.Te

P/Pe = (1 - c2) X = xis a finite limiting value. From the basic equation (la) and assuming
Pr = p*, one then obtains

L rK(X- 1) r. (X-1)
-h "(T)l/Pe - 2

It is noted in the Appendix that (2* and db/dx (thus x) decrease (slowly) with increasing
Me > 2. If C,* I/r has a limiting value or decreases more slowly than M2, as seems likely, then
L/h decreases with increasing Me, and this agrees with the observed trend (eg. Refs. 13, 14).
All this is rather speculative and it suggests that there are still interesting problems to be settled
for compressible turbulent shear layers.

7. CONCLUDING REMARKS

The preceding outlines an attempt to model the base pressure of bluff bodies, in su-ersonic
and incompressible flow, by working with the balance of stress forces on the mean near wake
defined by the closure streamline 0* = 0. By referencing the stress coefficients to the base
pressure and the corresponding dynamic pressure 1 pU2, the near wake dynamics is uncoupled
from the overall flow, even for the incompressible case, and is seen to be determined by the
fundamental parameters (Ce.,), [C*p] and LIW. The wake aspect ratio L/W is established
by the balance between the shear-stress force (CT.) and the pressure-rise force [C~p*]. As it
stands, the accuracy of the model is not high, but it may provide a framework which displays
the fundamental dynamics of the problem and on which improvements can rationally be made.
For example, with the role of the shear-layer stress displayed, the effects of parameters such as
Reynolds number, initial shear-layer thickness, external perturbation, etc. that affect the shear
stress can be rationally incorporated.

For the incompressible case, the reduced coefficients (C,.) and [Ca.]I are assumed to
have universal values for the "asymptotic" condition 0,/h --* 0; this leads to the conclusion
that LIW has a universal value L/W(, 3.5) for all bluff bodies with wakes stabilized against
vortex shedding. The connection to a particular bluff body is then made through a free-streamline
model for that body and this determines CPb as well as L/d and W/d. Numerical estimates of
the parameters, given in Table 1 for incompressible flow, indicate the sensitivity to those values.
A model of a reattaching shear layer would be helpful for improving the evaluation of [Cp, ], as
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well as (C,*). The free-streamline model also introduces some uncertainty; a different model
(e.g. the "re-entrant jet" model) will give a slightly different dependence of the wake geometry
on Cpb.

For the supersonic case the limitations are more serious. Information is still needed about
the structure of turbulent shear layers (-T*, u*, pt) at high Mach number. It is ironical that,
following the line of thought described in previous sections, we are unable to complete the
picture quantitatively for supersonic base flow because of insufficient information about super-
sonic reattachment pressure rise, with which the Chapman-Korst criterion dealt (apparently) so
efficiently!

APPENDIX: TURBULENT FREE SHEAR LAYERS

The state of the shear layer which forms the free boundary of the base flow is crucial in
the dynamics of that flow. The state depends on many factors, and usually cannot be described
simply, but it will be useful for reference to summarize here the properties of canonical turbulent
free shear layers, i.e. those that have developed at sufficiently high Reynolds number and
sufficiently far from initial conditions tc have reached an equilibrium turbulent structure with
self similar mean values, in particular, a mean velocity profile u = UeF(?7) and shear stress
distribution T- = Tr,mg(77) where 7=- y/x. The growth rate of the layer db/dx - 6' = const.
"The momentum integral can be used to find the self similar shear stress -r(77) for a measured
velocity profile u(77). In particular, the shear stress -r* on 1/* = 0, which is in fact the maximum
stress, can be found from the momentum integral:

00 'd o d
*- T- pu(UeIu)dY- pu (u - Ui) dy

11* -00

Here, the unique ray y* = 77*x coincides with the zero streamline 1* = 0 which has its origin
at the separation point (x = 0, y = 0); U, and Ui are the free-stream velocities on either side
(but for the base-flow modelling we take Ui = 0). The equality of integrals in this equation
can be used to calculate 7*. Then the velocity on the dividing streamline, u* = u(r7*) can
be determined. This, in effect, was the procedure used by Chapman and by Korst, who were
particularly interested in u*, correspondingly M* and pt. Here we are interested in also making
use of r*. Other quantities that may be of interest are the displacement thicknesses of the flow
above and below V/* = 0. These may be expressed as the positive displacement wedge angle
above V)" = 0,

00

17*

and the negative displacement thickness or equivalent entrainment angle below 0, = 0,
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For incompressible flow with Ui = 0, we believe that the best defined self similar mixing
layer is the one measured by Liepmann and Laufer [20]. The following "canonical" values have
been calculated for their velocity profile:

u*/UC = 0.57, thus Cp, = (0.57)2 = 0.32

r*/I-pU,= C,. = 0.025

db4/dx = 0.020

db* /dx = 0.034
For supersonic shear layers, these quantities depend on Me, piIpe, -y, and ar- not as well

defined as for the incompressible case. Very few measurements exist for demonstrated canonical
conditions, which are more difficult to achieve experimentally at supersonic conditions.

From Chapman's and from Korst's results one can work back to the values of total pressure
pt and Cp* that they calculated. These are shown in Fig. Al, from Ref. 21. The laminar case
(Chapman) was computed from exact equations but the turbulent case (Korst) is subject to the
uncertainties of turbulence modelling. For example, it gave for Me = 0 the value Cp* = 0.38
rather the value 0.32 based on the data of Ref. 20.

For the turbulent shear stress C,*, the most relevant data appear to be those of Elliott and
Samimy [22], who determined values of r,, from measured velocity profiles and also measured
Reynolds stresses directly. Their data provide values of rm/p(Ue - Ui) 2 for free shear layers
with (Me, Mi) = (1.80, 0.51), (1.97, 0.37) and (3.0, 0.45), corresponding to convective Mach
numbers M, = 0.51, 0.64 and 0.86, respectively. They are plotted in Fig. A2 against Me, for
Mi = 0, by using the "convective Mach number" concept [23] to make th'e correspondence
with M,. The somewhat arbitrary curve joins these points to the canonical value C,-m = 0.025
at M, = 0; it exhibits a rapid decrease with increasing compressibility, M0 , zimilar to that
which has been observed for the growth rate de/dx, but which tends to decrease more slowly
at M, > 1. Again, accuracy of the numbers resulting from our adaptations is uncertain.

Finally, note must be made of the effects, on the magnitudes of these quantities, of departures
from asymptotic, equilibrium conditions in the free shear layers which exist in actual base flows.
In particular, the effects of initial conditions at separation, usually expressed in terms of the
boundary-layer momentum thickness 00, delay the attainment of equilibrium conditions on V)*.
Bradshaw [24] found, in subsonic mixing layer., that the distance x along the shear layer to reach
equilibrium was 500 to 1,000 00, whether the initial boundary layer was laminar or turbulent.
For laminar initial conditions, transition occurs soon after separation and Tr,m (x) overshoots the
finai equilibrium value, but for turbulent separation, T,,,(x) approaches the equilibrium value
from below. In a base flow, with x,. - 6h, say, and 0o/h = 0.01, the wake length Xr,/O0 = 600,
which is near the lower limit of Bradshaw's criterion. Thus the average value of shear stress on
the base-flow boundary (C,-) will be lower than the equilibrium value for turbulent boundary-

12



layer separation, but may be higher if there is laminar separation followed by transition. As
function of 0o/h, the wake length will be shortest and the base drag highest in the transition
region, where (C,.) will have its maximum value.
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Figure 1. Bluff body models. (a) Newton's particle flow;
(b) Kirchhoff's free-streamline flow with Cpb = 0;

(c) Riabouchinsky's free-streamline flow with arbitrary Cpb < 0.
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0

Figure 2. Wake of flat plate. (a) Mean flow [2];
(b) Corresponding instantaneous vortex-shedding flow;
(c) Mean flow with splitter plate [2].
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Figure 3. Free-streamline representations of flows over bases and
steps. (a) Supersonic base flow; (b) Supersonic flow over a
step; (c) Subsonic base flow with splitter plate.
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Figure 4. Sketch of reattaching free shear layer and pressure rise.
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Figure 7. Wake parameters for bluff wedges and the flat plate.

(a) Wake aspect ratio; (b) Wake length. [19]
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Figure Al. Canonical pressure rise coefficient (C. = Cpt*) for

laminar (Chapman) and turbulent (Korst) free shear layers
(from Ref. 21).
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Figure A2. Maximum shear stress in compressible mixing layer. Data
of Elliot and Samimy [22] compared with the canonical
incompressible value Tr,m/(½pAU2 ) = 0.025.

(Me scale is for MA = 0)
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